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Executive function (EF) is believed to control or influence the integration and application of cognitive functions such as attention
and memory and is an important area of research in cognitive aging. Recent studies and reviews have concluded that there is
no single test for EF. Results from first-order latent variable modeling have suggested that little, if any, variability in cognitive
performance can be directly (and uniquely) attributed to EF; so instead, we modeled EF, as it is conceptualized, as a higher-order
function, using elements of the CERAD neuropsychological battery. Responses to subtests from two large, independent cohorts of
nondemented elderly persons were modeled with three theoretically plausible structural models using confirmatory factor analysis.
Robust fit statistics, generated for the two cohorts separately, were consistent and support the conceptualization of EF as a higher-
order cognitive faculty. Although not specifically designed to assess EF, subtests of the CERAD battery provide theoretically and
empirically robust evidence about the nature of EF in elderly adults.

1. Introduction

Executive function (EF) has become an area of great interest
to researchers in cognitive psychology and cognitive aging
especially [1–3]. In 2003 the National Institutes of Health
held a 2.5-day trans-NIH workshop focused on the construct
and its study, and the Committee on Research of the Amer-
ican Neuropsychiatric Association recently summarized a
variety of issues in the study and understanding of EF that
should be pursued and prioritized in future research [4].
Cognitive aging is a critical area of research [5] and EF is
important in cognitive aging either as a cause of decline
associated with aging or as an indicator of this decline that
is not unique (see [2], for review).

In his recent survey of the literature, Salthouse [6]
explored the range of definitions of EF in a series of articles
from 1994 through 2004. Definitions and assessments of EF
vary (see [6–8]), but it is generally accepted that it involves
control of the integration and application of cognitive func-
tions. That is, in spite of disagreement and uncertainty about
a specific definition of EF, there is widespread agreement
that it is a “higher-order” cognitive function. However, as
reviewed by Royall et al. [4], studies of the “structure” of
EF have tended to emphasize first-order structures (e.g., by
exploratory factor analysis; see pages 388–390, Table 3).

Many recent studies and reviews of the literature have
concluded that there is no single test for EF (see [1–3] for
reviews of EF dimensions and tests), and results from latent
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variable modeling have suggested that little, if any, variability
in cognitive performance can be directly attributed to EF [2,
6, 9]. Although latent variable modeling (structural equation
modeling, and/or confirmatory factor analysis) has been
employed in the most recent studies of EF and its makeup,
no model has tested hypotheses about EF as a higher-order
factor—the statistical representation of a cognitive function
that may be directly measured but is also measured through
its influence on lower-order, or more fundamental, functions
such as memory and attention.

The present study had two purposes. The first was to
determine whether, given an array of measures selected to
assess diverse aspects of cognitive function, evidence can be
found to support the conceptualization of EF as a higher-
order cognitive function in elderly persons without demen-
tia. The second purpose was to replicate such evidence, if
possible, in two independent cohorts with the same battery
of cognitive tests.

The measures in the neuropsychological battery of the
Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD) [10] were selected for that project to assess
those areas of cognition particularly affected in Alzheimer’s
disease. As such, no measures specifically designed to assess
EF were included; however, some of the measures present
(e.g., Verbal Fluency, reverse spelling of WORLD in the
Mini-Mental State Exam [11]) are representative of tasks
proposed as measures of EF [3, 12]. Since there is no one-
to-one correspondence between a specific task and a specific
neuropsychological function [12], but rather, some measures
are more strongly oriented to a particular cognitive function
than others, the tasks in the CERAD battery, designed
to assess a broad array of cognitive functions, offer an
appropriate set for the purposes of this study, which are
to seek statistical evidence of EF as a higher-order function
and evaluate the consistency of this evidence in independent
cohorts.

The analytic approach was to build a model EF as it is
conceptualized, namely, as a higher-order function. Instead
of simply estimating the fit of this particular model to the
data, two theoretically plausible alternative models were also
fit [13], so that the fit of this higher-order model could be
compared to that of a model where EF was not a higher-
order factor but was instead one of a set of correlated
factors, and with a model with a single factor to explain
the covariance among all test scores. The modeling was
replicated in two large and independent cohorts of elderly
persons, and fit statistics were computed to provide evidence
of whether a higher-order model of EF is a productive
element to incorporate into our evolving conceptualization
of this construct.

2. Methods

2.1. Subjects. Two independent community-based cohorts of
elderly individuals were assessed with the CERAD battery,
among other tests, during the period 1987–1999.

Cohort 1. CERAD control subjects (N = 460). CERAD
consisted of a consortium of Alzheimer Disease Research

Centers (ADRCs) funded by the National Institute on Aging.
Each of the 24 participating ADRCs was invited to submit
information based on CERAD materials for 40 patients with
Alzheimer’s disease, and 30 control subjects, 50 years of
age and older, assessed as cognitively normal, ambulatory,
without conditions that could affect cognition, and who
were not kin to an ADRC patient with AD. Participation in
CERAD was approved by the IRBs at each participating site
and signed consents were obtained.

Cohort 2. EPESE participants (N = 401). Duke EPESE
is one of five EPESE sites that carried out longitudinal
studies funded by the National Institute on Aging to
determine the health status, change in health status, and
health service use of persons 65 years of age and older.
Data were gathered from a stratified random household
sample (N = 4, 162; 80% response rate) in five counties
(one primarily urban, four primarily rural) in the piedmont
area of North Carolina. Blacks were deliberately oversampled
and represent 54% of the participants [14]. A stratified
subsample of the EPESE cohort participated in a study of the
incidence and prevalence of dementia [15]. While the EPESE
dementia study subsample included 458 participants with
normal cognition, information on the CERAD battery could
only be obtained from 401 of these because of relocation,
inability to find individuals, death, and/or poor health which
precluded ability to respond to the CERAD battery, and
in some cases, unwillingness to do so. Both Duke EPESE
and the dementia study were approved by the Duke IRB,
and signed consents were obtained.The same criteria were
used in both the CERAD and EPESE cohorts to determine
the absence of dementia, and the same procedures were
used to train, administer, and score the measures of the
CERAD neuropsychological battery (detailed in [10]). Only
data from the baseline evaluation of all subjects with the
consensus “diagnosis” of cognitively normal were included
in the present study.

2.2. Materials. The CERAD battery [10, 16] includes the
measures described below, presented in the order indicated.
Another measure, Word List Recognition (recognition of the
original 10 words presented in the Word List Learning task,
when embedded in 10 new words), was considered for our
analyses, but not included, since people who are cognitively
intact make few errors on this task (data not shown; see also
[17]).

Verbal Fluency (VERBFU T). The number of (unique) ani-
mals that can be named within 60 seconds. Scoring range is
0 on up.

15-Item Boston Naming Test (NBOSTOT) [18]. 15 of the 60
items of the Boston Naming Test were selected so that they
represent words of high, medium, and low frequency in the
English language. Scoring range is 0–15.

Mini-Mental State Examination (MMSE) (NMMSE TOT)
[11]. A brief screen of cognitive function in which spelling
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WORLD backwards is used instead of the serial seven
subtraction item. Scoring range is 0–30. The MMSE can
be considered to tap many different cognitive domains
[19]; in the present samples, particularly in CERAD where
cognitively normal people made few errors, it is likely to have
measured mainly differences in score on WORLD backwards,
that is, what is usually called “concentration”. Because of
the multidimensionality of the MMSE total score, the two
3-factor models were fit separately in each cohort with
the MMSE score coded in one of three ways; (a) total MMSE
score treated as an indicator of “EF”; (b) separated into two
scores: score on WORLD backwards (treated as an indicator
of “EF”), and score on the remaining items (not treated as
an indicator of “EF”); and (c) only WORLD backwards score
(treated as an indicator of “EF”).

10-Item Word List Learning Task (NWRDLSTME). Ten com-
mon nouns presented consecutively and read aloud by
the participant (or read to, and repeated by, the participant
if the participant cannot read), with a different order used
on each of three successive occasions. After each of the three
occasions the participant is asked to recall the nouns that he
or she had read. Scoring range is 0–10 for each presentation,
or, as used here, 0–30 for all three presentations combined.

Constructional Praxis (NCIRCLE, NDIAMOND, NRECT-
NGL, NCUBE) [20]. Copying a circle, diamond, overlapping
rectangles, and a cube, and each can be scored separately, and
summed scores can range from 0 to 11.

Word List Recall (NWRDLST4). It is a delayed recall of the
nouns of the 10-item Word List Learning task. Scoring range
is 0–10.

2.3. Statistical Methods. Confirmatory factor analyses
(CFAS) were carried using EQS 6.1 (Multivariate Software,
Inc., 2005). EQS computes robust fit statistics reflecting
multiple dimensions of the model-data fit (i.e., not simply
a chi-square statistic for model fit). Fit indices describing
the appropriateness of the model given the data (described
below) were recorded for each model run separately for each
cohort. Models were fit using robust methods (i.e., methods
that are appropriate when modeling assumptions are not
met). In all models, the same observed (indicator) variables
appear in the same order.

2.3.1. Model Fit. The models (one-factor (null), three cor-
related (first-order) factors, EF as higher-order factor) were
fit separately to the data from each cohort’s baseline visits.
Five different aspects of fit were assessed for each run in each
cohort, reflecting general data-model fit (Satorra-Bentler
model chi square, χ2—lower is better), assessment of the fit
of the model to data in hypothetical replications (Akaike’s
Information Criterion, AIC—lower is better), incremental
model fit relative to an independence model (comparative
fit index, CFI—between 0.95 and 1.0 is desirable), error in
approximation of the data by the model (root mean square
error of approximation, RMSEA—smaller and upper bound

of 90% CI <0.06 is ideal), and the mean absolute value
of the covariance residuals (standardized root mean square
residual, SRMR—smaller and <0.09 is best) (criteria for fit
indices are based on standard, and not robust, versions; see
[22]). These indices describe different aspects of the fit of
the model; we would consider a model that is superior in
all indices to be the “best fitting”. Robust versions of all fit
statistics were computed except for the SRMR, which has no
robust counterpart but which summarizes the fit in a way the
other (robust) indices do not.

Support for the same model was sought from all indices
(consistency) as well as within both cohorts (replicability).
We went through the modeling procedures three times,
obtaining fit statistics for all when the MMSE was included as
a total MMSE score (on the “EF” factor, when appropriate),
a WORLD backwards score (on the “EF” factor, when
appropriate) and the remainder of the MMSE total score
(on the “praxis” factor, when appropriate), and a WORLD
backwards score (on the “EF” factor, when appropriate)
without the remainder of the MMSE total score. We fit two
multifactor models: one hypothesizing causal (Model 1), and
one correlational (Model 2) relations in the structural model.
These are shown in Figure 1. Model 3, a “null” model (not
shown in Figure 1), specified all scores loading on a single
latent factor. In this manner we were able to examine the fit
of each model relative to the fit statistics as well as relative to
reasonable alternative models [13].

3. Results

3.1. Sample Characteristics. Table 1 presents the demo-
graphic and test performance summary statistics for the two
cohorts. The groups were significantly different in terms of
nearly all test scores and key demographic characteristics
(age, education, racial makeup).

The CERAD study cohort was younger, had more
education, and scored significantly higher on all but one of
the nine tests that were analyzed in these models (all P < .01
after Bonferroni adjustment for 15 tests). This cohort was
93% white, compared with 40% white in the EPESE cohort
(P < .05), but the two groups had similar proportions of
women (66% in CERAD and 62% in EPESE).

3.2. Structural Equation Modeling/CFA. Three measurement
models were selected on the basis of theoretical considera-
tions and additional exploratory analyses that are described
briefly in the appendix, Boston Naming (BN), MMSE total,
or WORLD backwards when this was separated from the
MMSE total, and verbal fluency constituted one latent factor
(Latent 1), which we generally characterized as representing
“executive function” (“EF”)—although all the scores were
selected for their potential as EF indicators. The other
measurement models (“Latent 2” and “Latent 3”) were
reflective of more specific domains (i.e., memory and praxis).
The four constructional praxis scores (rectangle, cube, circle,
diamond) constituted the “praxis” latent variable, and when
WORLD backwards was separated from the remainder of
the MMSE score, this MMSE-remainder was combined with



4 Current Gerontology and Geriatrics Research

NCIRCLE

NDIAMOND

NRECTANGL

NCUBE

WRDLSTME

NWRDLST4

Latent 2

Latent 3

Latent 1

VERBFLU T

NBOSTOT

NMMSETOT

E1

E2

E3

Model 1: Two higher-order latent factors (Latent 1, Latent 2), one first-order latent factor (Latent 3)

D2

D3

E4

E5

E6

E7

E8

E9

(a)

NCIRCLE

NDIAMOND

NRECTANGL

NCUBE

WRDLSTME

NWRDLST4

Latent 2

Latent 3

Latent 1

VERBFLU T

NBOSTOT

NMMSETOT

E1

E2

E3

Model 2: No higher-order latent factors, all latent variables are correlated

E4

E5

E6

E7

E8

E9

(b)

Figure 1: Confirmatory factor models with nine variables included. The total MMSE is shown in the models below, but we also fit the three
models with WORLD backwards on the factor with verbal fluency and the Boston Naming Task—with and without the remainder of the
MMSE on the “praxis” factor. The one-factor (null) model is not shown, but was also fit with the total MMSE; with the MMSE separated
into score on WORLD and score on the remainder of the MMSE; and with just the WORLD backwards score.

the praxis scores. The two memory scores were combined
to represent a “memory” latent variable; because the MMSE
component items are broader than these two memory tests,
we chose to combine the remainder MMSE score with the
other latent variable (praxis) when those analyses were run.

Preliminary exploratory modeling (see appendix) sup-
ported the same measurement models (i.e., latent variable
with associated observed scores) for both cohorts; so the
CFA models that we fit were also the same in both cohorts.

In addition to the two 3-factor structural models described
above, we also obtained fit statistics reflecting a one-factor
model of EF. That is, we selected the nine tests as potential
indicators of EF; so a one-factor model of EF with all scores
as indicators was also fit in each cohort. Thus, a total of
three structural models were fit. Model 1 is consistent with
a higher-order conceptualization of EF while Model 2 is
inconsistent with this conceptualization and is consistent
with the ways in which EF is typically modeled, although



Current Gerontology and Geriatrics Research 5

Table 1: Descriptive statistics of the two cohorts, Mean (SD), or %.

CERAD (N = 460) EPESE (N = 458)

Age∗ 68.36 (8.0) 79.44 (6.3)

Education∗ 13.69 (3.2) 8.35 (4.0)

Sex (% female) 65.9% 62.4%,

Race (% white)∗ 93.0% 40.4%,

Word List Learning (sum of 3 trials)∗ 20.66 (3.9) 13.59 (4.5) (N = 401)

Verbal Fluency∗ 17.66 (4.9) 12.26 (4.4) (N = 389)

Boston Naming∗ 14.41 (1.2) 11.65 (2.3) (N = 389)

Mini-Mental State Exam∗ 28.75 (1.5) 21.75 (8.2)

MMSE-red∗ 23.92 (1.3) 21.12 (3.1) (N = 373)

WORLD-backwards∗ 4.86 (0.5) 3.54 (1.6) (N = 373)

CP: Circles 1.99 (0.1) 1.96 (0.2) (N = 365)

CP: Diamonds∗ 2.84 (0.4) 2.53 (0.8) (N = 365)

CP: Rectangles∗ 1.99 (0.1) 1.87 (0.5) (N = 363)

CP: Cubes∗ 3.18 (1.2) 1.90 (1.3) (N = 359)

Word List Recall∗ 7.07 (2.0) (N = 459) 4.07 (2.2) (N = 391)

CP: Constructional Praxis; MMSE-red: MMSE total score without the WORLD backwards item; WORLD backwards: the WORLD backwards item score from
the MMSE (the sum of MMSE-red and WORLD backwards gives the total MMSE score).
∗Indicates that the difference between these groups is statistically significant (P < .001) after Bonferroni correction for multiple (15) comparisons.N shows
responses less than total sample size.

inconsistent with the theoretical representation of EF as a
higher-order faculty. Model 3, a single-factor model for all
of the scores we analyzed (not shown in Figure 1), is also
inconsistent with a higher-order conceptualization.

The fit statistics for the three models, fit separately
in each cohort and run three times with the different
MMSE configurations, are compiled in Table 2 for the three
structural models that we estimated using the total MMSE
score, the WORLD backwards and remaining MMSE score
on separate latent variables, and only the WORLD backwards
score on the “EF” latent variable, as described above.

In Table 2 it can be seen that the robust statistic for
model fit (Satorra-Bentler χ2) reflects good fit of Model
1 (EF as higher-order factor) to the data in both cohorts
(both P > .99). Model 2 (EF as first-order factor) reflects
moderate fit to the EPESE data (P = .10) but not for
the CERAD data (P = .009). Similarly, the other four
fit statistics suggest that the model that includes a higher-
order factor (Model 1) fits better than the first-order model
(Model 2), and this is true for all indices, and both cohorts,
across the three MMSE configurations. Model 3, the one-
factor model, hypothesizing that all nine measures represent
a single underlying latent factor, failed to meet any robust fit
index criterion except SRMR (i.e., fit poorly in both cohorts).

Model 1 (EF as higher-order factor) was the best
supported in both cohorts, irrespective of how the MMSE
was included. When we compared the fit statistics of Model
1 across the three configurations of MMSE score, we found
that when the total MMSE score was included as an indicator
of EF (first run, shown at the top of Table 2), the differences
between the higher-order (Model 1) and first-order (Model
2) configurations were more striking, in terms of model fit
(Satorra-Bentler χ2), which was good for Model 1 (both χ2 <
9, both P > .99), but poor (CERAD: χ2 = 43.27, P < .001) or

marginal (EPESE: χ2 = 32.96, P = .10) for Model 2. Similar
differences are observed, although difficult to interpret, in
AIC. CFI, SRMR, and RMSEA did not differentiate between
Models 1 and 2 when total MMSE was included on the
EF factor, although CFI and RMSEA values were better for
Model 1 than for Model 2.

When WORLD backwards was modeled on the EF factor
and the remainder of the MMSE total score was modeled
on the “Praxis” factor (second run, middle of Table 2), the
differences between the higher-order (Model 1) and first-
order (Model 2) configurations were moderate. In terms of
model fit (Satorra-Bentler χ2), Model 1 (χ2 = 18.91, P = .94)
but not Model 2 (χ2 = 65.13, P < .001) was a good fit in the
CERAD cohort, but a poor fit in the EPESE cohort (both χ2 >
50, both P ≤ .001). AIC supported Model 1 over Model 2 in
both cohorts, and CFI supported Model 1 over model 2 in the
CERAD, but not the EPESE cohort. As when total MMSE was
modeled, SRMR, and RMSEA did not differentiate between
Models 1 and 2 when WORLD-backward was included on
the EF factor and the remainder of the MMSE score was
modeled on the “Praxis” factor, although CFI, SRMR and
RMSEA values were all better for Model 1 than for Model 2.

When WORLD backwards alone was modeled (last run,
bottom of Table 2), the differences between the higher-order
(Model 1) and first-order (Model 2) configurations were
much less striking, in terms of model fit (Satorra-Bentler χ2)
and AIC. As when total MMSE was modeled, CFI, SRMR,
and RMSEA did not differentiate between Models 1 and 2
when WORLDbackward was included on the EF factor and
the remainder of the MMSE score was excluded from the
model, although CFI and RMSEA values were better for
Model 1 than for Model 2.

Irrespective of the representation of the MMSE across
our models, Model 1, hypothesizing EF as a higher-order



6 Current Gerontology and Geriatrics Research

T
a

bl
e

2:
M

od
el

-d
at

a
fi

t
tw

o
m

u
lt

if
ac

to
r

an
d

on
e

si
n

gl
e-

fa
ct

or
m

od
el

of
C

E
R

A
D

E
F-

ty
pe

te
st

s.
R

es
u

lt
s

ar
e

sh
ow

n
by

st
u

dy
sa

m
pl

e
an

d
ac

co
rd

in
g

to
w

h
et

h
er

th
e

to
ta

l
M

M
SE

sc
or

e,
th

e
W

O
R

LD
ba

ck
w

ar
ds

it
em

an
d

re
m

ai
n

in
g

M
M

SE
to

ta
ls

co
re

,o
r

ju
st

th
e

W
O

R
LD

ba
ck

w
ar

ds
it

em
w

er
e

in
cl

u
de

d.

M
od

el
G

ro
u

p
Fi

t
C

ri
te

ri
a

Sa
to

rr
a-

B
en

tl
er

χ2
(d

f,
P

)
A

IC
C

FI
SR

M
R
∗

R
M

SE
A

(9
0%

C
I)

N
in

e
sc

or
es

(t
ot

al
M

M
SE

in
cl

u
de

d
on

“E
F”

fa
ct

or
(w

h
er

e
>

1
fa

ct
or

))

H
ig

h
er

-o
rd

er
m

od
el

(o
n

e
h

ig
h

er
-o

rd
er

fa
ct

or
,t

w
o

fi
rs

t-
or

de
r

fa
ct

or
s)

.C
on

si
st

en
t

w
it

h
E

F
as

“h
ig

h
er

-o
rd

er
”

fa
cu

lt
y

C
E

R
A

D
3.

32
(2

2d
f,
P
=

1.
0)

−4
0.

68
1.

0
0.

03
9

0.
00

(C
I

n
ot

co
m

pu
te

d)

E
P

E
SE

8.
69

(2
2d

f,
P
=
.9

94
)

−3
5.

31
1.

0
0.

04
0

0.
00

(C
I

n
ot

co
m

pu
te

d)

Fi
rs

t-
or

de
r

fa
ct

or
s

(n
o

h
ig

h
er

-o
rd

er
la

te
n

t
fa

ct
or

).
In

co
n

si
st

en
t

w
it

h
E

F
as

“h
ig

h
er

-o
rd

er
”

fa
cu

lt
y

C
E

R
A

D
43

.2
7

(2
4d

f,
P
=
.0

09
)

−4
.7

3
0.

95
8

0.
03

9
0.

04
2

(0
.0

21
,0

.0
62

)

E
P

E
SE

32
.9

6
(2

4,
P
=
.1

0)
−1

5.
04

0.
98

1
0.

04
0

0.
03

3
(0

.0
0,

0.
05

8
)

O
n

e-
fa

ct
or

m
od

el
:a

ll
te

st
sc

or
es

re
fl

ec
t

a
si

n
gl

e
fa

ct
or

C
E

R
A

D
14

1.
91

(2
7d

f,
P
<
.0

01
)

87
.9

1
0.

74
8

0.
07

8
0.

09
7

(0
.0

81
,0

.1
12

)

E
P

E
SE

97
.4

8
(2

7d
f,
P
<
.0

01
)

43
.4

8
0.

84
8

0.
06

4
0.

08
6

(0
.0

68
,0

.1
05

)

Te
n

sc
or

es
(M

M
SE

-W
O

R
L

D
on

“p
ra

xi
s”

fa
ct

or
,W

O
R

L
D

on
“E

F”
fa

ct
or

(w
h

er
e
>

1
fa

ct
or

))

H
ig

h
er

-o
rd

er
m

od
el

(o
n

e
h

ig
h

er
-o

rd
er

fa
ct

or
,t

w
o

fi
rs

t-
or

de
r

fa
ct

or
s)

.C
on

si
st

en
t

w
it

h
E

F
as

“h
ig

h
er

-o
rd

er
”

fa
cu

lt
y

C
E

R
A

D
18

.9
1

(3
0d

f,
P
=
.9

4)
−4

1.
09

1.
0

0.
05

2
0.

00
(0

.0
0,

0.
00

7)

E
P

E
SE

52
.0

3
(3

0d
f,
P
=
.0

08
)

−7
.9

7
0.

94
4

0.
05

7
0.

04
8

(0
.0

24
,0

.0
69

)

Fi
rs

t-
or

de
r

fa
ct

or
s

(n
o

h
ig

h
er

-o
rd

er
la

te
n

t
fa

ct
or

).
In

co
n

si
st

en
t

w
it

h
E

F
as

“h
ig

h
er

-o
rd

er
”

fa
cu

lt
y

C
E

R
A

D
65

.1
3

(3
2d

f,
P
=
.0

00
2)

4.
13

0.
92

2
0.

05
2

0.
05

0
(0

.0
33

,0
.0

66
)

E
P

E
SE

63
.9

3
(3

2,
P
<
.0

01
)

−0
.0

7
0.

91
8

0.
05

7
0.

05
6

(0
.3

5,
0.

07
5)

O
n

e-
fa

ct
or

m
od

el
:a

ll
te

st
sc

or
es

re
fl

ec
t

a
si

n
gl

e
fa

ct
or

C
E

R
A

D
12

1.
78

(3
5d

f,
P
<
.0

01
)

51
.7

8
0.

81
4

0.
06

9
0.

07
4

(0
.0

60
,0

.0
88

)

E
P

E
SE

90
.6

2
(3

5d
f,
P
<
.0

01
)

20
.6

2
0.

85
8

0.
06

0
0.

07
0

(0
.0

52
,0

.0
88

)

N
in

e
Sc

or
es

(W
O

R
LD

on
“E

F”
fa

ct
or

,r
em

ai
n

de
r

of
M

M
SE

ex
cl

u
de

d
(w

h
er

e
>

1
fa

ct
or

))

H
ig

h
er

-o
rd

er
m

od
el

(o
n

e
h

ig
h

er
-o

rd
er

fa
ct

or
,t

w
o

fi
rs

t-
or

de
r

fa
ct

or
s)

.C
on

si
st

en
t

w
it

h
E

F
as

“h
ig

h
er

-o
rd

er
”

fa
cu

lt
y

C
E

R
A

D
22

.7
3

(2
2d

f,
P
=
.4

2)
−2

1.
27

0.
99

8
0.

03
5

0.
00

9
(0

.0
,0

.0
40

)

E
P

E
SE

8.
69

(2
2d

f,
P
=
.9

94
)

−2
4.

43
1.

0
0.

04
1

0.
00

(0
.0

,0
.0

40
)

Fi
rs

t-
or

de
r

fa
ct

or
s

(n
o

h
ig

h
er

-o
rd

er
la

te
n

t
fa

ct
or

).
In

co
n

si
st

en
t

w
it

h
E

F
as

“h
ig

h
er

-o
rd

er
”

fa
cu

lt
y

C
E

R
A

D
27

.2
4

(2
4d

f,
P
=
.2

94
)

−2
0.

76
5

0.
99

1
0.

03
5

0.
01

7
(0

.0
,0

.0
43

)

E
P

E
SE

29
.6

0
(2

4,
P
=
.2

0)
−1

8.
41

0.
98

3
0.

04
1

0.
02

7
(0

.0
0,

0.
05

5)

O
n

e-
fa

ct
or

m
od

el
:a

ll
te

st
sc

or
es

re
fl

ec
t

a
si

n
gl

e
fa

ct
or

C
E

R
A

D
87

.8
6

(2
7d

f,
P
<
.0

01
)

33
.8

6
0.

83
7

0.
07

0
0.

07
0

(0
.0

54
,0

.0
87

)

E
P

E
SE

82
.8

0
(2

7d
f,
P
<
.0

01
)

28
.8

0
0.

83
2

0.
06

7
0.

08
0

(0
.0

60
,0

.0
99

)
∗ A

ll
fi

t
in

di
ce

s
h

av
e

es
ti

m
at

io
n

pr
oc

ed
u

re
s

th
at

ar
e

ro
bu

st
to

di
st

ri
bu

ti
on

al
an

d
as

su
m

pt
io

n
al

vi
ol

at
io

n
s

ex
ce

pt
SR

M
R

.T
h

e
90

%
C

I
fo

r
R

M
SE

A
in

th
e

h
ig

h
er

-o
rd

er
m

od
el

w
as

n
ot

co
m

pu
ta

bl
e

fo
r

ei
th

er
co

h
or

t.
A

ll
sc

or
es

w
er

e
fr

om
th

e
ba

se
lin

e
vi

si
t.

In
al

lm
od

el
s

th
e

la
te

n
t

va
ri

ab
le

s
de

ri
ve

th
ei

r
sc

al
e

fr
om

st
an

da
rd

iz
at

io
n

of
th

ei
r

re
sp

ec
ti

ve
fa

ct
or

va
ri

an
ce

s
(s

et
=

1.
0)

.
Fi

t
cr

it
er

ia
:S

at
or

ra
-B

en
tl

er
χ2

:g
en

er
al

ro
bu

st
m

od
el

fi
t

st
at

is
ti

c,
w

it
h

th
e

as
so

ci
at

ed
P

-v
al

u
e

fo
r

th
e

de
gr

ee
s

of
fr

ee
do

m
sh

ow
n

.N
on

si
gn

ifi
ca

n
t
P

-v
al

u
e

su
gg

es
ts

“g
oo

d”
fi

t
of

m
od

el
to

da
ta

.A
IC

:r
ob

u
st

A
ka

ik
e’

s
In

fo
rm

at
io

n
C

ri
te

ri
on

;t
h

e
lo

w
er

,t
h

e
be

tt
er

.C
FI

:R
ob

u
st

C
om

pa
ra

ti
ve

fi
t

in
de

x;
th

e
cl

os
er

to
1.

0
th

e
be

tt
er

;a
cc

ep
ta

bl
e

m
od

el
s

h
av

e
C

FI
≥.

95
.S

R
M

R
:s

ta
n

da
rd

iz
ed

ro
ot

m
ea

n
sq

u
ar

e
re

si
du

al
s,

th
e

sm
al

le
r

(a
n

d
<

.0
9)

th
e

be
tt

er
.R

M
SE

A
:R

ob
u

st
ro

ot
m

ea
n

sq
u

ar
e

er
ro

r
of

ap
pr

ox
im

at
io

n
;t

h
e

cl
os

er
to

ze
ro

(a
n

d
p

os
it

iv
e)

th
e

be
tt

er
;a

cc
ep

ta
bl

e
m

od
el

s
h

av
e

an
u

pp
er

bo
u

n
d

on
th

e
90

%
C

I
<

.0
6.



Current Gerontology and Geriatrics Research 7

Table 3: Standardized structural equations (factor loadings only) for observed variables under higher-order EF model (including total
MMSE as EF indicator), by study cohort.

Observed variable
(indicator)

EPESE cohort
path weights∗

CERAD cohort
path weights

EF (2nd order
latent variable)

CP or MEM
(1st order
latent variable)

R2, proportion of variance
in indicator explained by
1st and 2nd order latent
variables

EF (2nd order
latent variable)

CP or MEM
(1st order
latent variable)

R2, proportion of variance
in indicator explained by
1st and 2nd order latent
variables∗

Sum of 3 trials
(memory)

.897 .804 .845 .715

Verbal Fluency .538 .289 .482 .233

Boston Naming .621 .386 .481 .231

MMSE .793 .628 .724 .524

CP: circle .290 .084 0.0 0.0

CP: diamond .539 .290 .493 .243

CP: rectangle .443 .196 .047 .002

CP: cube .572 .327 .642 .412

Delayed Recall .728 .529 .823 .677

Factor 2 (CP) .808 .004 .792 .280

Factor 3 (MEM) .980 −.279 .911 1.359 −.777 .720
∗Bentler-Raykov corrected R2 coefficients are shown. Bold indicates significant (P < .05) pathweight. CP: A factor (latent variable) interpreted as representing
constructional praxis. MEM: A factor (latent variable) interpreted as representing memory. EF: A factor (latent variable) interpreted as representing Executive
Function.

factor, was best supported (except by SRMR). The one-factor
(null) model was not a good fit to the data in either cohort.
Although the MMSE is a multidimensional test, the clearest
distinctions between the models were obtained when the
total MMSE score was hypothesized to be an indicator of EF
(first run). We do not claim that the models we fit are “true”,
but it is useful to examine the model-estimated relationships
between the variables, in the two cohorts, under Model 1.
The standardized pathweights for Model 1, with MMSE total
score hypothesized as an EF, appear in Table 3. The estimated
variability (R2) in each observed score that is explained by its
hypothesized associated latent variable is included, separately
for each cohort. Standardized pathweights can be interpreted
similar to regression coefficients, and more important for our
purposes is that the pattern in the R2 values is quite similar
for the two cohorts.

In the first row of Table 3 it can be seen that the
hypothesized underlying latent factor (“memory”) explains
80.4% of the variability in the sum of 3 trials memory
score in the EPESE cohort. Similarly, in the CERAD cohort,
71.5% of the variability in sum of 3 trials performance is
explained by the same latent variable. The pathweights and
associated R2 values are very similar for the two cohorts
with two exceptions, both in the “Praxis” latent variable. The
pathweights for circle and rectangle are not significant for
the CERAD cohort, but they are for the EPESE cohort. This
may be due to lower levels of variability on these scores in the
CERAD relative to the EPESE cohort (see Table 1).

4. Discussion and Conclusions

We analyzed nine measures of cognitive performance admin-
istered to two independent cohorts of elderly persons known

to be cognitively intact at the time of their initial evaluation.
Although the CERAD test battery was not created with
specific tests of executive function, our results suggest
that the tests we analyzed do contain some information
about EF. Our analyses suggested that, for both cohorts,
a higher-order latent variable yields a better fit to these
data than a first-order model. Both of the multifactor
models (with EF as a “causal” higher-order factor, and
with EF as a correlated first-order factor) fit the data
better than a single-factor model of EF, which did not fit
the data in either cohort. These results were observed in
two large cohorts of normal elderly who were statistically
significantly different in terms of cognitive test scores as
well as demographic characteristics. This replication across
divergent cohorts, particularly in terms of their respective
educational attainments, supports our conclusions that the
CERAD battery does contain general information about EF,
and that EF can be modeled as a higher-order cognitive
faculty.

Our comparisons of first- and second-order latent vari-
able models suggest that incrementally better fit is obtained
with a model hypothesizing EF as a higher-order latent
variable, and this was the case whether total score on the
MMSE (a general cognitive indicator) was used, whether
score on WORLD backwards was separated from score
on the other MMSE items, and these were distributed
across two factors, or whether we only used the WORLD
spelled backwards item on the EF factor. We were unable to
statistically compare the models since they are not nested, but
the statistical inference is not necessary, since, according to
the fit statistic criteria [22], the higher-order model was the
best fit to the data in both cohorts, and no matter how the
MMSE score was included.
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Importantly, the measurement and structural models
supported three latent variables that do not correspond
to, for example, three different executive functions (e.g.,
[8]). The tests that we modeled cannot all be considered
to simply represent different executive functions because
memory, which is the clear interpretation of the factor with
the two memory scores as indicators, is definitely not one of
the executive functions [6, 7, 23]. Therefore, our structural
model does not represent three different dimensions or
components of EF. It is possible that the first-order factor
representing “praxis” could be a “lower order” executive
function; the amount of variability in “praxis” that is due to
the higher-order factor is quite small, in spite of significant
pathweights in both of the two cohorts. One critical aspect of
this section of the model is that, with the latent variable we
interpreted as “executive function” causally influencing the
latent variable we interpreted as “praxis”, the latent variable
EF is conceptualized as having indirect causal influence
on the observed “praxis” indicator variables. This feature
reinforces the interpretation of the higher-order factor as
representing EF, rather than “general cognition”.

The structural model represents both the higher-order
EF factor and the factor we interpreted as “praxis” as causally
relevant for the memory factor. Perhaps underlying our
results is the fact that in order to perform any task, a variety
of functions considered “executive” are needed to a greater or
lesser extent [12]. These analyses capitalized on the feature
of latent variable modeling that the scores are not expected
to represent the underlying latent factor perfectly; our next
analytic project is to replicate these models in a cohort with
different EF measures and other memory and praxis test
scores. Replicating the best-fitting model in two independent
cohorts suggests that, with more specific measures of EF
in our next study, we should obtain more evidence about
whether EF can/should be modeled as a higher-order faculty.

The conceptualization of EF as a higher-order, and/or
multidimensional construct is not novel, and yet EF per-
formance is almost universally characterized by the “total
score” on one or more tasks specifically designed for either
frontal lobe or EF-specific assessment. Our results suggest
that, although not specifically designed to assess EF, subtests
of the CERAD battery provide theoretically and empirically
robust evidence about the nature of EF in elderly adults. They
support the conceptualization of EF as multidimensional
and hierarchical, with memory and constructional praxis
representing the “lower order” dimensions of EF within our
models.

It is unclear what the implication is for the clinical
day-to-day practice concerning EF evaluation, and although
our results were replicated across two independent sam-
ples, especially given their baseline cognitive functioning
and educational experience differences, it is challenging to
conclude that, for example, the tasks we analyzed should be
incorporated into EF assessments going forward. The tasks
we analyzed, from the CERAD battery, were not specifically
designed for the assessment of EF; neuropsychologists are
unlikely to adopt CERAD battery tasks for this functionality.
However, the results do have implications for the concep-
tualization of EF in future work, namely, that for research

in EF, more complex and multidimensional assessments
should be considered. Specifically, the assessment of EF in
research settings, and particularly, estimating changes in
EF over time, must be conceptualized and considered as
more than the simple difference between total scores on EF-
specific tasks, over tasks or over time. The definitions of,
and tests for, EF vary widely and most authors agree that
EF might represent a higher-order cognitive faculty. This
work tested the hypothesis explicitly and showed that even
with imperfect or incomplete representation of the variety
of EF-specific tasks, a latent variable model representing this
higher-order function was the best (and a good) fit to the
data across independent samples.

In conclusion, the CERAD battery contains some infor-
mation about executive functioning in elderly persons.
We sought statistical evidence for conceptualizing EF as a
higher-order function, and this was obtained in independent
cohorts. A higher-order structural equation model is a
statistical representation that could be a fruitful approach to
clarifying the role of EF in other theoretical or experimental
settings, or clarifying the assessment of EF in clinical contexts
(e.g., [2, 24]). We plan to pursue further evidence of EF as a
higher-order faculty and its utility in a clinical context in our
future analyses.

Appendix

Preliminary Exploratory Analyses

There were many different measurement models that
could have been selected; so a preliminary exploratory
step was performed using TETRAD (v. 4.3.8-6, Spirtes,
Scheines, Ramsey & Glymour, 2005; downloaded 20 July
2007 from http://www.phil.cmu.edu/projects/tetrad/. Both
data sets, with the three different MMSE configurations,
were modeled using the Build Pure Clusters (BPC) and
Multiple-Indicators-Model Build (MIMBuild) modules of
this program. BPC uses the tetrad difference (determinant
of a 2 × 2 submatrix of the overall covariance matrix of the
data set; [25]) followed by a partial correlations difference
to first obtain evidence of a common cause for the observed
variables (tetrad differences = 0) and then to determine that
none of the observed variables is that common cause (partial
correlations /= 0). Together, vanishing tetrad differences
plus nonvanishing partial correlations indicate the presence
of latent variables that underlie observed variables [26].
Specifically, BPC; finds latent variables that underlie only
those observed variables that can be identified as having
the single latent variable (representing a “pure” cluster of
observed variables) [26]. If BPC finds such pure clusters
of observed variables, which form measurement models
for their respective latent variables, the TETRAD module
MIMBuild will then estimate the relationships between the
latent variables identified by BPC, that is, MIMBuild esti-
mates the structural model relating the latents. The structural
model will be more, or less, detailed in the sense that the
algorithms will simply indicate association (correlation),
rather than causality, if insufficient information is present
in the data. Thus, the result of the exploratory step with

http://www.phil.cmu.edu/projects/tetrad/
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TETRAD analyses provided evidence for the number of
latent variables and the observed variables that load solely
on each latent variable, plus evidence about the relationships
among the latent variables. These functions were run on
the scores described in the Materials section, with each of
the three different variations on the MMSE scores. These
results are not shown, but the majority of the results from
this preliminary step supported the measurement models
that were fit in the analyses presented in this paper. That
is, the exploratory analyses independently reflected the same
measurement models underlying the observations from the
two cohorts.
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